
WGET2(1) GNU Wget2 2.1.0 WGET2(1)

Name
 Wget2 - a recursive metalink/file/website downloader.

Synopsis
 wget2 [options]... [URL]...

Description
 GNU Wget2 is a free utility for non-interactive download of files from
 the Web. It supports HTTP and HTTPS protocols, as well as retrieval
 through HTTP(S) proxies.

 Wget2 is non-interactive, meaning that it can work in the background,
 while the user is not logged on. This allows you to start a retrieval
 and disconnect from the system, letting Wget2 finish the work. By
 contrast, most of the Web browsers require constant userâ€™s presence,
 which can be a great hindrance when transferring a lot of data.

 Wget2 can follow links in HTML, XHTML, CSS, RSS, Atom and sitemap files
 to create local versions of remote web sites, fully recreating the
 directory structure of the original site. This is sometimes referred
 to as recursive downloading. While doing that, Wget2 respects the
 Robot Exclusion Standard (/robots.txt). Wget2 can be instructed to
 convert the links in downloaded files to point at the local files, for
 offline viewing.

 Wget2 has been designed for robustness over slow or unstable network
 connections; if a download fails due to a network problem, it will keep
 retrying until the whole file has been retrieved. If the server
 supports partial downloads, it may continue the download from where it
 left off.

Options
 Option Syntax
 Every option has a long form and sometimes also a short one. Long
 options are more convenient to remember, but take time to type. You
 may freely mix different option styles. Thus you may write:

wget2 -r --tries=10 https://example.com/ -o log

 The space between the option accepting an argument and the argument may
 be omitted. Instead of -o log you can write -olog.

 You may put several options that do not require arguments together,
 like:

wget2 -drc

 This is equivalent to:

wget2 -d -r -c

 Since the options can be specified after the arguments, you may
 terminate them with --. So the following will try to download URL -x,
 reporting failure to log:

wget2 -o log -- -x

 The options that accept comma-separated lists all respect the
 convention that prepending --no- clears its value. This can be useful
 to clear the .wget2rc settings. For instance, if your .wget2rc sets
 exclude-directories to /cgi-bin, the following example will first reset
 it, and then set it to exclude /priv and /trash. You can also clear
 the lists in .wget2rc.

wget2 --no-exclude-directories -X /priv,/trash

 Most options that do not accept arguments are boolean options, so named
 because their state can be captured with a yes-or-no (â€œbooleanâ€�)
 variable. A boolean option is either affirmative or negative
 (beginning with --no-). All such options share several properties.

 Affirmative options can be negated by prepending the --no- to the
 option name; negative options can be negated by omitting the --no-
 prefix. This might seem superfluous - if the default for an
 affirmative option is to not do something, then why provide a way to
 explicitly turn it off? But the startup file may in fact change the
 default. For instance, using timestamping = on in .wget2rc makes Wget2
 download updated files only. Using --no-timestamping is the only way
 to restore the factory default from the command line.

 Basic Startup Options
 -V, --version
 Display the version of Wget2.

 -h, --help
 Print a help message describing all of Wget2â€™s command-line options.

 -b, --background
 Go to background immediately after startup. If no output file is
 specified via the -o, output is redirected to wget-log.

 -e, --execute=command
 Execute command as if it were a part of .wget2rc. A command thus
 invoked will be executed after the commands in .wget2rc, thus taking
 precedence over them. If you need to specify more than one wget2rc
 command, use multiple instances of -e.

 --hyperlink
 Hyperlink names of downloaded files so that they can opened from the
 terminal by clicking on them. Only a few terminal emulators currently
 support hyperlinks. Enable this option if you know your terminal
 supports hyperlinks.

 Logging and Input File Options
 -o, --output-file=logfile
 Log all messages to logfile. The messages are normally reported to
 standard error.

 -a, --append-output=logfile
 Append to logfile. This is the same as -o, only it appends to logfile
 instead of overwriting the old log file. If logfile does not exist, a
 new file is created.

 -d, --debug
 Turn on debug output, meaning various information important to the
 developers of Wget2 if it does not work properly. Your system
 administrator may have chosen to compile Wget2 without debug support,
 in which case -d will not work. Please note that compiling with debug
 support is always safe, Wget2 compiled with the debug support will not
 print any debug info unless requested with -d.

 -q, --quiet
 Turn off Wget2â€™s output.

 -v, --verbose
 Turn on verbose output, with all the available data. The default
 output is verbose.

 -nv, --no-verbose
 Turn off verbose without being completely quiet (use -q for that),
 which means that error messages and basic information still get
 printed.

 --report-speed=type
 Output bandwidth as type. The only accepted values are bytes (which is
 set by default) and bits. This option only works if --progress=bar is
 also set.

 -i, --input-file=file
 Read URLs from a local or external file. If - is specified as file,
 URLs are read from the standard input. Use ./- to read from a file
 literally named -.

 If this function is used, no URLs need be present on the command line.
 If there are URLs both on the command line and in an input file, those
 on the command lines will be the first ones to be retrieved. file is
 expected to contain one URL per line, except one of the --force-
 options specifies a different format.

 If you specify --force-html, the document will be regarded as HTML. In
 that case you may have problems with relative links, which you can
 solve either by adding to the documents or by
 specifying --base=url on the command line.

 If you specify --force-css, the document will be regarded as CSS.

 If you specify --force-sitemap, the document will be regarded as XML
 sitemap.

 If you specify --force-atom, the document will be regarded as Atom
 Feed.

 If you specify --force-rss, the document will be regarded as RSS Feed.

 If you specify --force-metalink, the document will be regarded as
 Metalink description.

 If you have problems with relative links, you should use --base=url on
 the command line.

 -F, --force-html
 When input is read from a file, force it to be treated as an HTML file.
 This enables you to retrieve relative links from existing HTML files on
 your local disk, by adding â€œâ€� to HTML, or using the --base command-line
 option.

 --force-css
 Read and parse the input file as CSS. This enables you to retrieve
 links from existing CSS files on your local disk. You will need --base
 to handle relative links correctly.

 --force-sitemap
 Read and parse the input file as sitemap XML. This enables you to
 retrieve links from existing sitemap files on your local disk. You
 will need --base to handle relative links correctly.

 --force-atom
 Read and parse the input file as Atom Feed XML. This enables you to
 retrieve links from existing sitemap files on your local disk. You
 will need --base to handle relative links correctly.

 --force-rss
 Read and parse the input file as RSS Feed XML. This enables you to
 retrieve links from existing sitemap files on your local disk. You
 will need --base to handle relative links correctly.

 --force-metalink
 Read and parse the input file as Metalink. This enables you to
 retrieve links from existing Metalink files on your local disk. You
 will need --base to handle relative links correctly.

 -B, --base=URL
 Resolves relative links using URL as the point of reference, when
 reading links from an HTML file specified via the -i/--input-file
 option (together with a --force... option, or when the input file was
 fetched remotely from a server describing it as HTML, CSS, Atom or
 RSS). This is equivalent to the presence of a â€œBASEâ€� tag in the HTML
 input file, with URL as the value for the â€œhrefâ€� attribute.

 For instance, if you specify https://example.com/bar/a.html for URL,
 and Wget2 reads ../baz/b.html from the input file, it would be resolved
 to https://example.com/baz/b.html.

 --config=FILE
 Specify the location of configuration files you wish to use. If you
 specify more than one file, either by using a comma-separated list or
 several --config options, these files are read in left-to-right order.
 The files given in $SYSTEM_WGET2RC and ($WGET2RC or ~/.wget2rc) are
 read in that order and then the user-provided config file(s). If set,
 $WGET2RC replaces ~/.wget2rc.

 --no-config empties the internal list of config files. So if you want
 to prevent reading any config files, give --no-config on the command
 line.

 --no-config followed by --config=file just reads file and skips reading
 the default config files.

 Wget will attempt to tilde-expand filenames written in the
 configuration file on supported platforms. To use a file that starts
 with the character literal `~', use â€œ./~â€� or an absolute path.

 --rejected-log=logfile [Not implemented yet]
 Logs all URL rejections to logfile as comma separated values. The
 values include the reason of rejection, the URL and the parent URL it
 was found in.

 --local-db
 Enables reading/writing to local database files (default: on).

 These are the files for --hsts, --hpkp, --ocsp, etc.

 With --no-local-db you can switch reading/writing off, e.g. useful for
 testing.

 This option does not influence the reading of config files.

 --stats-dns=[FORMAT:]FILE
 Save DNS stats in format FORMAT, in file FILE.

 FORMAT can be human or csv. - is shorthand for stdout and h is
 shorthand for human.

 The CSV output format is

 Hostname,IP,Port,Duration

 `Duration` is given in milliseconds.

 --stats-tls=[FORMAT:]FILE
 Save TLS stats in format FORMAT, in file FILE.

 FORMAT can be human or csv. - is shorthand for stdout and h is
 shorthand for human.

 The CSV output format is

 Hostname,TLSVersion,FalseStart,TFO,Resumed,ALPN,HTTPVersion,Certificates,Duration

 `TLSVersion` can be 1,2,3,4,5 for SSL3, TLS1.0, TLS1.1, TLS1.2 and TLS1.3. -1 means 'None'.

 `FalseStart` whether the connection used TLS False Start. -1 if not applicable.

 `TFO` whether the connection used TCP Fast Open. -1 is TFO was disabled.

 `Resumed` whether the TLS session was resumed or not.

 `ALPN` is the ALPN negotiation string.

 `HTTPVersion` is 0 for HTTP 1.1 and 1 is for HTTP 2.0.

 `Certificates` is the size of the server's certificate chain.

 `Duration` is given in milliseconds.

 --stats-ocsp=[FORMAT:]FILE
 Save OCSP stats in format FORMAT, in file FILE.

 FORMAT can be human or csv. - is shorthand for stdout and h is
 shorthand for human.

 The CSV output format is

 Hostname,Stapling,Valid,Revoked,Ignored

 `Stapling` whether an OCSP response was stapled or not.

 `Valid` how many server certificates were valid regarding OCSP.

 `Revoked` how many server certificates were revoked regarding OCSP.

 `Ignored` how many server certificates had been ignored or OCSP responses missing.

 --stats-server=[FORMAT:]FILE
 Save Server stats in format FORMAT, in file FILE.

 FORMAT can be human or csv. - is shorthand for stdout and h is
 shorthand for human.

 The CSV output format is

 Hostname,IP,Scheme,HPKP,NewHPKP,HSTS,CSP

 `Scheme` 0,1,2 mean `None`, `http`, `https`.

 `HPKP` values 0,1,2,3 mean 'No HPKP', 'HPKP matched', 'HPKP doesn't match', 'HPKP error'.

 `NewHPKP` whether server sent HPKP (Public-Key-Pins) header.

 `HSTS` whether server sent HSTS (Strict-Transport-Security) header.

 `CSP` whether server sent CSP (Content-Security-Policy) header.

 --stats-site=[FORMAT:]FILE
 Save Site stats in format FORMAT, in file FILE.

 FORMAT can be human or csv. - is shorthand for stdout and h is
 shorthand for human.

 The CSV output format is

 ID,ParentID,URL,Status,Link,Method,Size,SizeDecompressed,TransferTime,ResponseTime,Encoding,Verification

 `ID` unique ID for a stats record.

 `ParentID` ID of the parent document, relevant for `--recursive` mode.

 `URL` URL of the document.

 `Status` HTTP response code or 0 if not applicable.

 `Link` 1 means 'direkt link', 0 means 'redirection link'.

 `Method` 1,2,3 mean GET, HEAD, POST request type.

 `Size` size of downloaded body (theoretical value for HEAD requests).

 `SizeDecompressed` size of decompressed body (0 for HEAD requests).

 `TransferTime` ms between start of request and completed download.

 `ResponseTime` ms between start of request and first response packet.

 `Encoding` 0,1,2,3,4,5 mean server side compression was 'identity', 'gzip', 'deflate', 'lzma/xz', 'bzip2', 'brotli', 'zstd', 'lzip'

 `Verification` PGP verification status. 0,1,2,3 mean 'none', 'valid', 'invalid', 'bad', 'missing'.

 Download Options
 --bind-address=ADDRESS
 When making client TCP/IP connections, bind to ADDRESS on the local
 machine. ADDRESS may be specified as a hostname or IP address. This
 option can be useful if your machine is bound to multiple IPs.

 --bind-interface=INTERFACE
 When making client TCP/IP connections, bind to INTERFACE on the local
 machine. INTERFACE may be specified as the name for a Network
 Interface. This option can be useful if your machine has multiple
 Network Interfaces. However, the option works only when wget2 is run
 with elevated privileges (On GNU/Linux: root / sudo or sudo setcap
 cap_net_raw+ep).

 -t, --tries=number
 Set number of tries to number. Specify 0 or inf for infinite retrying.
 The default is to retry 20 times, with the exception of fatal errors
 like â€œconnection refusedâ€� or â€œnot foundâ€� (404), which are not retried.

 --retry-on-http-error=list
 Specify a comma-separated list of HTTP codes in which Wget2 will retry
 the download. The elements of the list may contain wildcards. If an
 HTTP code starts with the character `!' it wonâ€™t be downloaded. This
 is useful when trying to download something with exceptions. For
 example, retry every failed download if error code is not 404:

wget2 --retry-on-http-error=*,\!404 https://example.com/

 Please keep in mind that â€œ200â€� is the only forbidden code. If it is
 included on the status list Wget2 will ignore it. The max. number of
 download attempts is given by the --tries option.

 -O, --output-document=file
 The documents will not be written to the appropriate files, but all
 will be concatenated together and written to file. If - is used as
 file, documents will be printed to standard output, disabling link
 conversion. Use ./- to print to a file literally named -. To not get
 Wget2 status messages mixed with file content, use -q in combination
 with -O- (This is different to how Wget 1.x behaves).

 Using -r or -p with -O may not work as you expect: Wget2 wonâ€™t just
 download the first file to file and then download the rest to their
 normal names: all downloaded content will be placed in file.

 A combination with -nc is only accepted if the given output file does
 not exist.

 When used along with the -c option, Wget2 will attempt to continue
 downloading the file whose name is passed to the option, irrespective
 of whether the actual file already exists on disk or not. This allows
 users to download a file with a temporary name alongside the actual
 file.

 Note that a combination with -k is only permitted when downloading a
 single document, as in that case it will just convert all relative URIs
 to external ones; -k makes no sense for multiple URIs when theyâ€™re all
 being downloaded to a single file; -k can be used only when the output
 is a regular file.

 Compatibility-Note: Wget 1.x used to treat -O as analogous to shell
 redirection. Wget2 does not handle the option similarly. Hence, the
 file will not always be newly created. The fileâ€™s timestamps will not
 be affected unless it is actually written to. As a result, both -c and
 -N options are now supported in conjunction with this option.

 -nc, --no-clobber
 If a file is downloaded more than once in the same directory, Wget2â€™s
 behavior depends on a few options, including -nc. In certain cases,
 the local file will be clobbered, or overwritten, upon repeated
 download. In other cases it will be preserved.

 When running Wget2 without -N, -nc, -r, or -p, downloading the same
 file in the same directory will result in the original copy of file
 being preserved and the second copy being named file.1. If that file
 is downloaded yet again, the third copy will be named file.2, and so
 on. (This is also the behavior with -nd, even if -r or -p are in
 effect.) Use --keep-extension to use an alternative file naming
 pattern.

 When -nc is specified, this behavior is suppressed, and Wget2 will
 refuse to download newer copies of file. Therefore, â€œâ€œno-clobberâ€�â€� is
 actually a misnomer in this mode - itâ€™s not clobbering thatâ€™s prevented
 (as the numeric suffixes were already preventing clobbering), but
 rather the multiple version saving thatâ€™s prevented.

 When running Wget2 with -r or -p, but without -N, -nd, or -nc, re-
 downloading a file will result in the new copy simply overwriting the
 old. Adding -nc will prevent this behavior, instead causing the
 original version to be preserved and any newer copies on the server to
 be ignored.

 When running Wget2 with -N, with or without -r or -p, the decision as
 to whether or not to download a newer copy of a file depends on the
 local and remote timestamp and size of the file. -nc may not be
 specified at the same time as -N.

 A combination with -O/--output-document is only accepted if the given
 output file does not exist.

 Note that when -nc is specified, files with the suffixes .html or .htm
 will be loaded from the local disk and parsed as if they had been
 retrieved from the Web.

 --backups=backups
 Before (over)writing a file, back up an existing file by adding a .1
 suffix to the file name. Such backup files are rotated to .2, .3, and
 so on, up to backups (and lost beyond that).

 -c, --continue
 Continue getting a partially-downloaded file. This is useful when you
 want to finish up a download started by a previous instance of Wget2,
 or by another program. For instance:

wget2 -c https://example.com/tarball.gz

 If there is a file named tarball.gz in the current directory, Wget2
 will assume that it is the first portion of the remote file, and will
 ask the server to continue the retrieval from an offset equal to the
 length of the local file.

 Note that you donâ€™t need to specify this option if you just want the
 current invocation of Wget2 to retry downloading a file should the
 connection be lost midway through. This is the default behavior. -c
 only affects resumption of downloads started prior to this invocation
 of Wget2, and whose local files are still sitting around.

 Without -c, the previous example would just download the remote file to
 tarball.gz.1, leaving the truncated tarball.gz file alone.

 If you use -c on a non-empty file, and it turns out that the server
 does not support continued downloading, Wget2 will refuse to start the
 download from scratch, which would effectively ruin existing contents.
 If you really want the download to start from scratch, remove the file.

 If you use -c on a file which is of equal size as the one on the
 server, Wget2 will refuse to download the file and print an explanatory
 message. The same happens when the file is smaller on the server than
 locally (presumably because it was changed on the server since your
 last download attempt). Because â€œcontinuingâ€� is not meaningful, no
 download occurs.

 On the other side of the coin, while using -c, any file thatâ€™s bigger
 on the server than locally will be considered an incomplete download
 and only â€œ(length(remote) - length(local))â€� bytes will be downloaded
 and tacked onto the end of the local file. This behavior can be
 desirable in certain cases. For instance, you can use wget2 -c to
 download just the new portion thatâ€™s been appended to a data collection
 or log file.

 However, if the file is bigger on the server because itâ€™s been changed,
 as opposed to just appended to, youâ€™ll end up with a garbled file.
 Wget2 has no way of verifying that the local file is really a valid
 prefix of the remote file. You need to be especially careful of this
 when using -c in conjunction with -r, since every file will be
 considered as an â€œincomplete downloadâ€� candidate.

 considered as an â€œincomplete downloadâ€� candidate.

 Another instance where youâ€™ll get a garbled file if you try to use -c
 is if you have a lame HTTP proxy that inserts a â€œtransfer interruptedâ€�
 string into the local file. In the future a â€œrollbackâ€� option may be
 added to deal with this case.

 Note that -c only works with HTTP servers that support the â€œRangeâ€�
 header.

 --start-pos=OFFSET
 Start downloading at zero-based position OFFSET. Offset may be
 expressed in bytes, kilobytes with the k' suffix, or megabytes with
 themâ€™ suffix, etc.

 --start-pos has higher precedence over --continue. When --start-pos
 and --continue are both specified, Wget2 will emit a warning then
 proceed as if --continue was absent.

 Server support for continued download is required, otherwise â€“start-pos
 cannot help. See -c for details.

 --progress=type
 Select the type of the progress indicator you wish to use. Supported
 indicator types are none and bar.

 Type bar draws an ASCII progress bar graphics (a.k.a â€œthermometerâ€�
 display) indicating the status of retrieval.

 If the output is a TTY, bar is the default. Else, the progress bar
 will be switched off, except when using --force-progress.

 The type `dot' is currently not supported, but wonâ€™t trigger an error
 to not break wget command lines.

 The parameterized types bar:force and bar:force:noscroll will add the
 effect of --force-progress. These are accepted for better wget
 compatibility.

 --force-progress
 Force Wget2 to display the progress bar in any verbosity.

 By default, Wget2 only displays the progress bar in verbose mode. One
 may however, want Wget2 to display the progress bar on screen in
 conjunction with any other verbosity modes like --no-verbose or
 --quiet. This is often a desired a property when invoking Wget2 to
 download several small/large files. In such a case, Wget2 could simply
 be invoked with this parameter to get a much cleaner output on the
 screen.

 This option will also force the progress bar to be printed to stderr
 when used alongside the --output-file option.

 -N, --timestamping
 Turn on time-stamping.

 --no-if-modified-since
 Do not send If-Modified-Since header in -N mode. Send preliminary HEAD
 request instead. This has only effect in -N mode.

 --no-use-server-timestamps
 Donâ€™t set the local fileâ€™s timestamp by the one on the server.

 By default, when a file is downloaded, its timestamps are set to match
 those from the remote file. This allows the use of --timestamping on
 subsequent invocations of Wget2. However, it is sometimes useful to
 base the local fileâ€™s timestamp on when it was actually downloaded; for
 that purpose, the --no-use-server-timestamps option has been provided.

 -S, --server-response
 Print the response headers sent by HTTP servers.

 --spider
 When invoked with this option, Wget2 will behave as a Web spider, which
 means that it will not download the pages, just check that they are
 there. For example, you can use Wget2 to check your bookmarks:

wget2 --spider --force-html -i bookmarks.html

 This feature needs much more work for Wget2 to get close to the
 functionality of real web spiders.

 -T seconds, --timeout=seconds
 Set the network timeout to seconds seconds. This is equivalent to
 specifying --dns-timeout, --connect-timeout, and --read-timeout, all at
 the same time.

 When interacting with the network, Wget2 can check for timeout and
 abort the operation if it takes too long. This prevents anomalies like
 hanging reads and infinite connects. The only timeout enabled by
 default is a 900-second read timeout. Setting a timeout to 0 disables
 it altogether. Unless you know what you are doing, it is best not to
 change the default timeout settings.

 All timeout-related options accept decimal values, as well as subsecond
 values. For example, 0.1 seconds is a legal (though unwise) choice of
 timeout. Subsecond timeouts are useful for checking server response
 times or for testing network latency.

 --dns-timeout=seconds
 Set the DNS lookup timeout to seconds seconds. DNS lookups that donâ€™t
 complete within the specified time will fail. By default, there is no
 timeout on DNS lookups, other than that implemented by system
 libraries.

 --connect-timeout=seconds
 Set the connect timeout to seconds seconds. TCP connections that take
 longer to establish will be aborted. By default, there is no connect
 timeout, other than that implemented by system libraries.

 --read-timeout=seconds
 Set the read (and write) timeout to seconds seconds. The â€œtimeâ€� of
 this timeout refers to idle time: if, at any point in the download, no
 data is received for more than the specified number of seconds, reading
 fails and the download is restarted. This option does not directly
 affect the duration of the entire download.

 Of course, the remote server may choose to terminate the connection
 sooner than this option requires. The default read timeout is 900
 seconds.

 --limit-rate=amount
 Limit the download speed to amount bytes per second. Amount may be
 expressed in bytes, kilobytes with the k suffix, or megabytes with the
 m suffix. For example, --limit-rate=20k will limit the retrieval rate
 to 20KB/s. This is useful when, for whatever reason, you donâ€™t want
 Wget2 to consume the entire available bandwidth.

 This option allows the use of decimal numbers, usually in conjunction
 with power suffixes; for example, --limit-rate=2.5k is a legal value.

 Note that Wget2 implements the limiting by sleeping the appropriate
 amount of time after a network read that took less time than specified
 by the rate. Eventually this strategy causes the TCP transfer to slow
 down to approximately the specified rate. However, it may take some
 time for this balance to be achieved, so donâ€™t be surprised if limiting
 the rate doesnâ€™t work well with very small files.

 -w seconds, --wait=seconds
 Wait the specified number of seconds between the retrievals. Use of
 this option is recommended, as it lightens the server load by making
 the requests less frequent. Instead of in seconds, the time can be
 specified in minutes using the â€œmâ€� suffix, in hours using â€œhâ€� suffix,
 or in days using â€œdâ€� suffix.

 Specifying a large value for this option is useful if the network or
 the destination host is down, so that Wget2 can wait long enough to
 reasonably expect the network error to be fixed before the retry. The
 waiting interval specified by this function is influenced by --random-
 wait, which see.

 --waitretry=seconds
 If you donâ€™t want Wget2 to wait between every retrieval, but only
 between retries of failed downloads, you can use this option. Wget2
 will use linear backoff, waiting 1 second after the first failure on a
 given file, then waiting 2 seconds after the second failure on that
 file, up to the maximum number of seconds you specify.

 By default, Wget2 will assume a value of 10 seconds.

 --random-wait
 Some web sites may perform log analysis to identify retrieval programs
 such as Wget2 by looking for statistically significant similarities in
 the time between requests. This option causes the time between
 requests to vary between 0.5 and 1.5 ### wait seconds, where wait was
 specified using the --wait option, in order to mask Wget2â€™s presence
 from such analysis.

 A 2001 article in a publication devoted to development on a popular
 consumer platform provided code to perform this analysis on the fly.
 Its author suggested blocking at the class C address level to ensure
 automated retrieval programs were blocked despite changing DHCP-
 supplied addresses.

 The --random-wait option was inspired by this ill-advised
 recommendation to block many unrelated users from a web site due to the
 actions of one.

 --no-proxy[=exceptions]
 If no argument is given, we try to stay backward compatible with
 Wget1.x and donâ€™t use proxies, even if the appropriate *_proxy
 environment variable is defined.

 If a comma-separated list of exceptions (domains/IPs) is given, these
 exceptions are accessed without using a proxy. It overrides the
 `no_proxy' environment variable.

 -Q quota, --quota=quota
 Specify download quota for automatic retrievals. The value can be
 specified in bytes (default), kilobytes (with k suffix), or megabytes
 (with m suffix).

 Note that quota will never affect downloading a single file. So if you
 specify

wget2 -Q10k https://example.com/bigfile.gz

 all of the bigfile.gz will be downloaded. The same goes even when
 several URLs are specified on the command-line. However, quota is
 respected when retrieving either recursively, or from an input file.
 Thus you may safely type

wget2 -Q2m -i sites

 download will be aborted when the quota is exceeded.

 Setting quota to 0 or to inf unlimits the download quota.

 --restrict-file-names=modes
 Change which characters found in remote URLs must be escaped during
 generation of local filenames. Characters that are restricted by this
 option are escaped, i.e. replaced with %HH, where HH is the hexadecimal
 number that corresponds to the restricted character. This option may
 also be used to force all alphabetical cases to be either lower- or
 uppercase.

 By default, Wget2 escapes the characters that are not valid or safe as
 part of file names on your operating system, as well as control
 characters that are typically unprintable. This option is useful for
 changing these defaults, perhaps because you are downloading to a non-
 native partition, or because you want to disable escaping of the
 control characters, or you want to further restrict characters to only
 those in the ASCII range of values.

 The modes are a comma-separated set of text values. The acceptable
 values are unix, windows, nocontrol, ascii, lowercase, and uppercase.
 The values unix and windows are mutually exclusive (one will override
 the other), as are lowercase and uppercase. Those last are special
 cases, as they do not change the set of characters that would be
 escaped, but rather force local file paths to be converted either to
 lower- or uppercase.

 When â€œunixâ€� is specified, Wget2 escapes the character / and the control
 characters in the ranges 0â€“31 and 128â€“159. This is the default on
 Unix-like operating systems.

 When â€œwindowsâ€� is given, Wget2 escapes the characters , |, /, :, ?, â€œ,
 *, <, >, and the control characters in the ranges 0â€“31 and 128â€“159. In
 addition to this, Wget2 in Windows mode uses + instead of : to separate
 host and port in local file names, and uses @ instead of ? to separate
 the query portion of the file name from the rest. Therefore, a URL
 that would be saved as www.xemacs.org:4300/search.pl?input=blah in Unix
 mode would be saved as www.xemacs.org+4300/search.pl@input=blah in
 Windows mode. This mode is the default on Windows.

 If you specify nocontrol, then the escaping of the control characters
 is also switched off. This option may make sense when you are
 downloading URLs whose names contain UTF-8 characters, on a system
 which can save and display filenames in UTF-8 (some possible byte
 values used in UTF-8 byte sequences fall in the range of values
 designated by Wget2 as â€œcontrolsâ€�).

 The ascii mode is used to specify that any bytes whose values are
 outside the range of ASCII characters (that is, greater than 127) shall
 be escaped. This can be useful when saving filenames whose encoding
 does not match the one used locally.

 -4, --inet4-only, -6, --inet6-only
 Force connecting to IPv4 or IPv6 addresses. With --inet4-only or -4,
 Wget2 will only connect to IPv4 hosts, ignoring AAAA records in DNS,
 and refusing to connect to IPv6 addresses specified in URLs.
 Conversely, with --inet6-only or -6, Wget2 will only connect to IPv6
 hosts and ignore A records and IPv4 addresses.

 Neither options should be needed normally. By default, an IPv6-aware
 Wget2 will use the address family specified by the hostâ€™s DNS record.
 If the DNS responds with both IPv4 and IPv6 addresses, Wget2 will try
 them in sequence until it finds one it can connect to. (Also see
 --prefer-family option described below.)

 These options can be used to deliberately force the use of IPv4 or IPv6
 address families on dual family systems, usually to aid debugging or to
 deal with broken network configuration. Only one of --inet6-only and
 --inet4-only may be specified at the same time. Neither option is
 available in Wget2 compiled without IPv6 support.

 --prefer-family=none/IPv4/IPv6
 When given a choice of several addresses, connect to the addresses with
 specified address family first. The address order returned by DNS is
 used without change by default.

 This avoids spurious errors and connect attempts when accessing hosts
 that resolve to both IPv6 and IPv4 addresses from IPv4 networks. For
 example, www.kame.net resolves to 2001:200:0:8002:203:47ff:fea5:3085
 and to 203.178.141.194. When the preferred family is â€œIPv4â€�, the IPv4
 address is used first; when the preferred family is â€œIPv6â€�, the IPv6
 address is used first; if the specified value is â€œnoneâ€�, the address
 order returned by DNS is used without change.

 Unlike -4 and -6, this option doesnâ€™t inhibit access to any address
 family, it only changes the order in which the addresses are accessed.
 Also note that the reordering performed by this option is stable. It
 doesnâ€™t affect order of addresses of the same family. That is, the
 relative order of all IPv4 addresses and of all IPv6 addresses remains
 intact in all cases.

 --tcp-fastopen
 Enable support for TCP Fast Open (TFO) (default: on).

 TFO reduces connection latency by 1 RT on â€œhotâ€� connections (2nd+
 connection to the same host in a certain amount of time).

 Currently this works on recent Linux and OSX kernels, on HTTP and
 HTTPS.

 --dns-cache-preload=file
 Load a list of IP / Name tuples into the DNS cache.

 The format of file is like /etc/hosts: IP-address whitespace Name

 This allows to save domain name lookup time, which is a bottleneck in
 some use cases. Also, the use of HOSTALIASES (which is not portable)
 can be mimiced by this option.

 --dns-cache
 Enable DNS caching (default: on).

 Normally, Wget2 remembers the IP addresses it looked up from DNS so it
 doesnâ€™t have to repeatedly contact the DNS server for the same
 (typically small) set of hosts it retrieves from. This cache exists in
 memory only; a new Wget2 run will contact DNS again.

 However, it has been reported that in some situations it is not
 desirable to cache host names, even for the duration of a short-running
 application like Wget2. With --no-dns-cache Wget2 issues a new DNS
 lookup (more precisely, a new call to â€œgethostbynameâ€� or â€œgetaddrinfoâ€�)
 each time it makes a new connection. Please note that this option will
 not affect caching that might be performed by the resolving library or
 by an external caching layer, such as NSCD.

 --retry-connrefused
 Consider â€œconnection refusedâ€� a transient error and try again.
 Normally Wget2 gives up on a URL when it is unable to connect to the
 site because failure to connect is taken as a sign that the server is
 not running at all and that retries would not help. This option is for
 mirroring unreliable sites whose servers tend to disappear for short
 periods of time.

 --user=user, --password=password
 Specify the username user and password password for HTTP file
 retrieval. This overrides the lookup of credentials in the .netrc file
 (--netrc is enabled by default). These parameters can be overridden
 using the --http-user and --http-password options for HTTP(S)
 connections.

 If neither --http-proxy-user nor --http-proxy-password is given these
 settings are also taken for proxy authentication.

 --ask-password
 Prompt for a password on the command line. Overrides the password set
 by --password (if any).

 --use-askpass=command
 Prompt for a user and password using the specified command. Overrides
 the user and/or password set by --user/--password (if any).

 --no-iri
 Turn off internationalized URI (IRI) support. Use --iri to turn it on.
 IRI support is activated by default.

 You can set the default state of IRI support using the â€œiriâ€� command in
 .wget2rc. That setting may be overridden from the command line.

 --local-encoding=encoding
 Force Wget2 to use encoding as the default system encoding. That
 affects how Wget2 converts URLs specified as arguments from locale to
 UTF-8 for IRI support.

 Wget2 use the function â€œnl_langinfo()â€� and then the â€œCHARSETâ€�
 environment variable to get the locale. If it fails, ASCII is used.

 --remote-encoding=encoding
 Force Wget2 to use encoding as the default remote server encoding.
 That affects how Wget2 converts URIs found in files from remote
 encoding to UTF-8 during a recursive fetch. This options is only
 useful for IRI support, for the interpretation of non-ASCII characters.

 For HTTP, remote encoding can be found in HTTP â€œContent-Typeâ€� header
 and in HTML â€œContent-Type http-equivâ€� meta tag.

 --input-encoding=encoding
 Use the specified encoding for the URLs read from --input-file. The
 default is the local encoding.

 --unlink
 Force Wget2 to unlink file instead of clobbering existing file. This
 option is useful for downloading to the directory with hardlinks.

 --cut-url-get-vars
 Remove HTTP GET Variables from URLs. For example â€œmain.css?v=123â€� will
 be changed to â€œmain.cssâ€�. Be aware that this may have unintended side
 effects, for example â€œimage.php?name=sunâ€� will be changed to
 â€œimage.phpâ€�. The cutting happens before adding the URL to the download
 queue.

 --cut-file-get-vars
 Remove HTTP GET Variables from filenames. For example â€œmain.css?v=123â€�
 will be changed to â€œmain.cssâ€�.

 Be aware that this may have unintended side effects, for example
 â€œimage.php?name=sunâ€� will be changed to â€œimage.phpâ€�. The cutting
 happens when saving the file, after downloading.

 File names obtained from a â€œContent-Dispositionâ€� header are not
 affected by this setting (see --content-disposition), and can be a
 solution for this problem.

 When --trust-server-names is used, the redirection URL is affected by
 this setting.

 --chunk-size=size
 Download large files in multithreaded chunks. This switch specifies
 the size of the chunks, given in bytes if no other byte multiple unit
 is specified. By default itâ€™s set on 0/off.

 --max-threads=number
 Specifies the maximum number of concurrent download threads for a
 resource. The default is 5 but if you want to allow more or fewer this
 is the option to use.

 -s, --verify-sig[=fail|no-fail]
 Enable PGP signature verification (when not prefixed with no-). When
 enabled Wget2 will attempt to download and verify PGP signatures
 against their corresponding files. Any file downloaded that has a
 content type beginning with application/ will cause Wget2 to request
 the signature for that file.

 The name of the signature file is computed by appending the extension
 to the full path of the file that was just downloaded. The extension
 used is defined by the --signature-extensions option. If the content
 type for the signature request is application/pgp-signature, Wget2 will
 attempt to verify the signature against the original file. By default,
 if a signature file cannot be found (I.E. the request for it gets a
 404 status code) Wget2 will exit with an error code.

 This behavior can be tuned using the following arguments: * fail: This
 is the default, meaning that this is the value when you supply the flag
 without an argument. Indicates that missing signature files will cause
 Wget2 to exit with an error code. * no-fail: This value allows missing
 signature files. A 404 message will still be issued, but the program
 will exit normally (assuming no unrelated errors).

 Additionally, --no-verify-sig disables signature checking altogether
 --no-verify-sig does not allow any arguments.

 --signature-extensions
 Specify the file extensions for signature files, without the leading
 â€œ.â€�. You may specify multiple extensions as a comma separated list.
 All the provided extensions will be tried simultaneously when looking
 for the signature file. The default is â€œsigâ€�.

 --gnupg-homedir
 Specifies the gnupg home directory to use when verifying PGP signatures
 on downloaded files. The default for this is your systemâ€™s default
 home directory.

 --verify-save-failed
 Instructs Wget2 to keep files that donâ€™t pass PGP signature validation.
 The default is to delete files that fail validation.

 --xattr
 Saves documents metadata as â€œuser POSIX Extended Attributesâ€� (default:
 on). This feature only works if the file system supports it. More
 info on https://freedesktop.org/wiki/CommonExtendedAttributes.

 Wget2 currently sets * user.xdg.origin.url * user.xdg.referrer.url *
 user.mime_type * user.charset

 To display the extended attributes of a file (Linux): getfattr -d

 --metalink
 Follow/process metalink URLs without saving them (default: on).

 Metalink files describe downloads incl. mirrors, files, checksums,
 signatures. This allows chunked downloads, automatically taking the
 nearest mirrors, preferring the fastest mirrors and checking the
 download for integrity.

 --fsync-policy
 Enables disk syncing after each write (default: off).

 --http2-request-window=number
 Set max. number of parallel streams per HTTP/2 connection (default:
 30).

 --keep-extension
 This option changes the behavior for creating a unique filename if a
 file already exists.

 The standard (default) pattern for file names is ., the
 new pattern is _..

 The idea is to use such files without renaming when the use depends on
 the extension, like on Windows.

 This option doesn not change the behavior of --backups.

 Directory Options
 -nd, --no-directories
 Do not create a hierarchy of directories when retrieving recursively.
 With this option turned on, all files will get saved to the current
 directory, without clobbering (if a name shows up more than once, the
 filenames will get extensions .n).

 -x, --force-directories
 The opposite of -nd: create a hierarchy of directories, even if one
 would not have been created otherwise. E.g. wget2 -x
 https://example.com/robots.txt will save the downloaded file to
 example.com/robots.txt.

 -nH, --no-host-directories
 Disable generation of host-prefixed directories. By default, invoking
 Wget2 with -r https://example.com/ will create a structure of
 directories beginning with example.com/. This option disables such
 behavior.

 behavior.

 --protocol-directories
 Use the protocol name as a directory component of local file names.
 For example, with this option, wget2 -r https://example.com will save
 to https/example.com/... rather than just to example.com/....

 --cut-dirs=number
 Ignore a number of directory components. This is useful for getting a
 fine-grained control over the directory where recursive retrieval will
 be saved.

 Take, for example, the directory at https://example.com/pub/sub/. If
 you retrieve it with -r, it will be saved locally under
 example.com/pub/sub/. While the -nH option can remove the example.com/
 part, you are still stuck with pub/sub/. This is where --cut-dirs
 comes in handy; it makes Wget2 not â€œseeâ€� a number of remote directory
 components. Here are several examples of how --cut-dirs option works.
 No options -> example.com/pub/sub/ --cut-dirs=1 ->
 example.com/sub/ --cut-dirs=2 -> example.com/ -nH
 -> pub/sub/ -nH --cut-dirs=1 -> sub/ -nH --cut-dirs=2 -> .
 If you just want to get rid of the directory structure, this option is
 similar to a combination of -nd and -P. However, unlike -nd, --cut-
 dirs does not lose with subdirectories. For instance, with -nH --cut-
 dirs=1, a beta/ subdirectory will be placed to sub/beta/, as one would
 expect.

 -P prefix, --directory-prefix=prefix
 Set directory prefix to prefix. The directory prefix is the directory
 where all other files and subdirectories will be saved to, i.e. the top
 of the retrieval tree. The default is ., the current directory. If
 the directory prefix doesnâ€™t exist, it will be created.

 HTTP Options
 --default-page=name
 Use name as the default file name when it isnâ€™t known (i.e., for URLs
 that end in a slash), instead of index.html.

 --default-http-port=port
 Set the default port for HTTP URLs (default: 80).

 This is mainly for testing purposes.

 --default-https-port=port
 Set the default port for HTTPS URLs (default: 443).

 This is mainly for testing purposes.

 -E, --adjust-extension
 If a file of type application/xhtml+xml or text/html is downloaded and
 the URL does not end with the regexp \.[Hh][Tt][Mm][Ll]?, this option
 will cause the suffix .html to be appended to the local filename. This
 is useful, for instance, when youâ€™re mirroring a remote site that uses
 .asp pages, but you want the mirrored pages to be viewable on your
 stock Apache server. Another good use for this is when youâ€™re
 downloading CGI-generated materials. A URL like
 https://example.com/article.cgi?25 will be saved as
 article.cgi?25.html.

 Note that filenames changed in this way will be re-downloaded every
 time you re-mirror a site, because Wget2 canâ€™t tell that the local
 X.html file corresponds to remote URL X (since it doesnâ€™t yet know that
 the URL produces output of type text/html or application/xhtml+xml.

 Wget2 will also ensure that any downloaded files of type text/css end
 in the suffix .css.

 At some point in the future, this option may well be expanded to
 include suffixes for other types of content, including content types
 that are not parsed by Wget.

 --http-user=user, --http-password=password
 Specify the user and password for HTTP authentication. According to
 the type of the challenge, Wget will encode them using either the
 â€œbasicâ€� (insecure), the â€œdigestâ€�, or the Windows â€œNTLMâ€� authentication
 scheme.

 If possible, put your credentials into ~/.netrc (see also --netrc and
 --netrc-file options) or into .wget2rc. This is far more secure than
 using the command line which can be seen by any other user. If the
 passwords are really important, do not leave them lying in those files
 either. Edit the files and delete them after Wget2 has started the
 download.

 In ~/.netrc passwords may be double quoted to allow spaces. Also,
 escape characters with a backslash if needed. A backslash in a
 password always needs to be escaped, so use \\ instead of a single \.

 Also see --use-askpass and --ask-password for an interactive method to
 provide your password.

 --http-proxy-user=user, --http-proxy-password=password
 Specify the user and password for HTTP proxy authentication. See
 --http-user for details.

 --http-proxy=proxies
 Set comma-separated list of HTTP proxies. The environment variable
 `http_proxy' will be overridden.

 Exceptions can be set via the environment variable `no_proxy' or via
 --no-proxy.

 --https-proxy=proxies
 Set comma-separated list of HTTPS proxies. The environment variable
 `https_proxy' will be overridden.

 Exceptions can be set via the environment variable `no_proxy' or via
 --no-proxy.

 --no-http-keep-alive
 Turn off the â€œkeep-aliveâ€� feature for HTTP(S) downloads. Normally,
 Wget2 asks the server to keep the connection open so that, when you
 download more than one document from the same server, they get
 transferred over the same TCP connection. This saves time and at the
 same time reduces the load on the server.

 This option is useful when, for some reason, persistent (keep-alive)
 connections donâ€™t work for you, for example due to a server bug or due
 to the inability of server-side scripts to cope with the connections.

 --no-cache
 Disable server-side cache. In this case, Wget2 will send the remote
 server appropriate directives (Cache-Control: no- cache and Pragma: no-
 cache) to get the file from the remote service, rather than returning
 the cached version. This is especially useful for retrieving and
 flushing out-of-date documents on proxy servers.

 Caching is allowed by default.

 --no-cookies
 Disable the use of cookies. Cookies are a mechanism for maintaining
 server-side state. The server sends the client a cookie using the
 â€œSet-Cookieâ€� header, and the client responds with the same cookie upon
 further requests. Since cookies allow the server owners to keep track
 of visitors and for sites to exchange this information, some consider
 them a breach of privacy. The default is to use cookies; however,
 storing cookies is not on by default.

 --load-cookies file
 Load cookies from file before the first HTTP(S) retrieval. file is a
 textual file in the format originally used by Netscapeâ€™s cookies.txt
 file.

 You will typically use this option when mirroring sites that require
 that you be logged in to access some or all of their content. The
 login process typically works by the web server issuing an HTTP cookie
 upon receiving and verifying your credentials. The cookie is then
 resent by the browser when accessing that part of the site, and so
 proves your identity.

 Mirroring such a site requires Wget2 to send the same cookies your
 browser sends when communicating with the site. This is achieved by
 --load-cookies: simply point Wget2 to the location of the cookies.txt
 file, and it will send the same cookies your browser would send in the
 same situation. Different browsers keep textual cookie files in
 different locations:

 â€œNetscape 4.x.â€� The cookies are in ~/.netscape/cookies.txt.

 â€œMozilla and Netscape 6.x.â€� Mozillaâ€™s cookie file is also named
 cookies.txt, located somewhere under ~/.mozilla, in the directory of
 your profile. The full path usually ends up looking somewhat like
 ~/.mozilla/default/some-weird- string/cookies.txt.

 â€œInternet Explorer.â€� You can produce a cookie file Wget2 can use by
 using the File menu, Import and Export, Export Cookies. This has been
 tested with Internet Explorer 5; it is not guaranteed to work with
 earlier versions.

 â€œOther browsers.â€� If you are using a different browser to create your
 cookies, --load-cookies will only work if you can locate or produce a
 cookie file in the Netscape format that Wget2 expects.

 If you cannot use --load-cookies, there might still be an alternative.
 If your browser supports a â€œcookie managerâ€�, you can use it to view the
 cookies used when accessing the site youâ€™re mirroring. Write down the
 name and value of the cookie, and manually instruct Wget2 to send those
 cookies, bypassing the â€œofficialâ€� cookie support:

wget2 --no-cookies --header "Cookie: ="

 --save-cookies file
 Save cookies to file before exiting. This will not save cookies that
 have expired or that have no expiry time (so-called â€œsession cookiesâ€�),
 but also see --keep-session-cookies.

 --keep-session-cookies
 When specified, causes --save-cookies to also save session cookies.
 Session cookies are normally not saved because they are meant to be
 kept in memory and forgotten when you exit the browser. Saving them is
 useful on sites that require you to log in or to visit the home page
 before you can access some pages. With this option, multiple Wget2
 runs are considered a single browser session as far as the site is
 concerned.

 Since the cookie file format does not normally carry session cookies,
 Wget2 marks them with an expiry timestamp of 0. Wget2â€™s --load-cookies
 recognizes those as session cookies, but it might confuse other
 browsers. Also note that cookies so loaded will be treated as other
 session cookies, which means that if you want --save-cookies to
 preserve them again, you must use --keep-session-cookies again.

 --cookie-suffixes=file
 Load the public suffixes used for cookie checking from the given file.

 Normally, the underlying libpsl loads this data from a system file or
 it has the data built in. In some cases you might want to load an
 updated PSL, e.g. from
 https://publicsuffix.org/list/public_suffix_list.dat.

 The PSL allows to prevent setting of â€œsuper-cookiesâ€� that lead to
 cookie privacy leakage. More details can be found on
 https://publicsuffix.org/.

 --ignore-length
 Unfortunately, some HTTP servers (CGI programs, to be more precise)
 send out bogus â€œContent-Lengthâ€� headers, which makes Wget2 go wild, as
 it thinks not all the document was retrieved. You can spot this
 syndrome if Wget retries getting the same document again and again,
 each time claiming that the (otherwise normal) connection has closed on
 the very same byte.

 With this option, Wget2 will ignore the â€œContent-Lengthâ€� header as if
 it never existed.

 --header=header-line
 Send header-line along with the rest of the headers in each HTTP
 request. The supplied header is sent as-is, which means it must
 contain name and value separated by colon, and must not contain
 newlines.

 You may define more than one additional header by specifying --header
 more than once.

wget2 --header='Accept-Charset: iso-8859-2' \
 --header='Accept-Language: hr' \
 https://example.com/

 Specification of an empty string as the header value will clear all
 previous user-defined headers.

 This option can be used to override headers otherwise generated
 automatically. This example instructs Wget2 to connect to localhost,
 but to specify example.com in the â€œHostâ€� header:

wget2 --header="Host: example.com" http://localhost/

 --max-redirect=number
 Specifies the maximum number of redirections to follow for a resource.
 The default is 20, which is usually far more than necessary. However,
 on those occasions where you want to allow more (or fewer), this is the
 option to use.

 --proxy-user=user, --proxy-password=password [Not implemented, use
 --http-proxy-password]
 Specify the username user and password password for authentication on a
 proxy server. Wget2 will encode them using the â€œbasicâ€� authentication
 scheme.

 Security considerations similar to those with --http-password pertain
 here as well.

 --referer=url
 Include `Referer: urlâ€™ header in HTTP request. Useful for retrieving
 documents with server-side processing that assume they are always being
 retrieved by interactive web browsers and only come out properly when
 Referer is set to one of the pages that point to them.

 --save-headers
 Save the headers sent by the HTTP server to the file, preceding the
 actual contents, with an empty line as the separator.

 -U agent-string, --user-agent=agent-string
 Identify as agent-string to the HTTP server.

 The HTTP protocol allows the clients to identify themselves using a
 â€œUser-Agentâ€� header field. This enables distinguishing the WWW
 software, usually for statistical purposes or for tracing of protocol
 violations. Wget normally identifies as Wget/version, version being
 the current version number of Wget.

 However, some sites have been known to impose the policy of tailoring
 the output according to the â€œUser-Agentâ€�-supplied information. While
 this is not such a bad idea in theory, it has been abused by servers
 denying information to clients other than (historically) Netscape or,
 more frequently, Microsoft Internet Explorer. This option allows you
 to change the â€œUser-Agentâ€� line issued by Wget. Use of this option is
 discouraged, unless you really know what you are doing.

 Specifying empty user agent with --user-agent="" instructs Wget2 not to
 send the â€œUser-Agentâ€� header in HTTP requests.

 --post-data=string, --post-file=file
 Use POST as the method for all HTTP requests and send the specified
 data in the request body. â€“post-data sends string as data, whereas
 --post-file sends the contents of file. Other than that, they work in
 exactly the same way. In particular, they both expect content of the
 form â€œkey1=value1&key2=value2â€�, with percent-encoding for special
 characters; the only difference is that one expects its content as a
 command-line parameter and the other accepts its content from a file.
 In particular, --post-file is not for transmitting files as form
 attachments: those must appear as â€œkey=valueâ€� data (with appropriate
 percent-coding) just like everything else. Wget2 does not currently
 support â€œmultipart/form-dataâ€� for transmitting POST data; only
 â€œapplication/x-www-form-urlencodedâ€�. Only one of --post-data and
 --post-file should be specified.

 Please note that wget2 does not require the content to be of the form
 â€œkey1=value1&key2=value2â€�, and neither does it test for it. Wget2 will
 simply transmit whatever data is provided to it. Most servers however
 expect the POST data to be in the above format when processing HTML
 Forms.

 When sending a POST request using the --post-file option, Wget2 treats
 the file as a binary file and will send every character in the POST
 request without stripping trailing newline or formfeed characters. Any
 other control characters in the text will also be sent as-is in the
 POST request.

 Please be aware that Wget2 needs to know the size of the POST data in
 advance. Therefore the argument to --post-file must be a regular file;
 specifying a FIFO or something like /dev/stdin wonâ€™t work. Itâ€™s not
 quite clear how to work around this limitation inherent in HTTP/1.0.
 Although HTTP/1.1 introduces chunked transfer that doesnâ€™t require
 knowing the request length in advance, a client canâ€™t use chunked
 unless it knows itâ€™s talking to an HTTP/1.1 server. And it canâ€™t know
 that until it receives a response, which in turn requires the request
 to have been completed â€“ a chicken-and-egg problem.

 If Wget2 is redirected after the POST request is completed, its
 behaviour depends on the response code returned by the server. In case
 of a 301 Moved Permanently, 302 Moved Temporarily or 307 Temporary
 Redirect, Wget2 will, in accordance with RFC2616, continue to send a
 POST request. In case a server wants the client to change the Request
 method upon redirection, it should send a 303 See Other response code.

 This example shows how to log in to a server using POST and then
 proceed to download the desired pages, presumably only accessible to
 authorized users:

Log in to the server. This can be done only once.
wget2 --save-cookies cookies.txt \
 --post-data 'user=foo&password=bar' \
 http://example.com/auth.php

Now grab the page or pages we care about.
wget2 --load-cookies cookies.txt \
 -p http://example.com/interesting/article.php

 If the server is using session cookies to track user authentication,
 the above will not work because --save-cookies will not save them (and
 neither will browsers) and the cookies.txt file will be empty. In that
 case use --keep-session-cookies along with --save-cookies to force
 saving of session cookies.

 --method=HTTP-Method
 For the purpose of RESTful scripting, Wget2 allows sending of other
 HTTP Methods without the need to explicitly set them using
 --header=Header-Line. Wget2 will use whatever string is passed to it
 after --method as the HTTP Method to the server.

 --body-data=Data-String, --body-file=Data-File
 Must be set when additional data needs to be sent to the server along
 with the Method specified using --method. --body-data sends string as
 data, whereas --body-file sends the contents of file. Other than that,
 they work in exactly the same way.

 Currently, --body-file is not for transmitting files as a whole. Wget2
 does not currently support â€œmultipart/form-dataâ€� for transmitting data;
 only â€œapplication/x-www-form-urlencodedâ€�. In the future, this may be
 changed so that wget2 sends the --body-file as a complete file instead
 of sending its contents to the server. Please be aware that Wget2
 needs to know the contents of BODY Data in advance, and hence the
 argument to --body-file should be a regular file. See --post-file for
 a more detailed explanation. Only one of --body-data and --body-file
 should be specified.

 If Wget2 is redirected after the request is completed, Wget2 will
 suspend the current method and send a GET request till the redirection
 is completed. This is true for all redirection response codes except
 307 Temporary Redirect which is used to explicitly specify that the
 request method should not change. Another exception is when the method
 is set to â€œPOSTâ€�, in which case the redirection rules specified under
 --post-data are followed.

 --content-disposition
 If this is set to on, experimental (not fully-functional) support for
 â€œContent-Dispositionâ€� headers is enabled. This can currently result in
 extra round-trips to the server for a â€œHEADâ€� request, and is known to
 suffer from a few bugs, which is why it is not currently enabled by
 default.

 This option is useful for some file-downloading CGI programs that use
 â€œContent-Dispositionâ€� headers to describe what the name of a downloaded
 file should be.

 --content-on-error
 If this is set to on, wget2 will not skip the content when the server
 responds with a http status code that indicates error.

 --save-content-on
 This takes a comma-separated list of HTTP status codes to save the
 content for.

 You can use â€™*â€™ for ANY. An exclamation mark (!) in front of a code
 means `exception'.

 Example 1: --save-content-on="*,!404" would save the content on any
 HTTP status, except for 404.

 Example 2: --save-content-on=404 would save the content only on HTTP
 status 404.

 The older --content-on-error behaves like --save-content-on=*.

 --trust-server-names
 If this is set to on, on a redirect the last component of the
 redirection URL will be used as the local file name. By default it is
 used the last component in the original URL.

 --auth-no-challenge
 If this option is given, Wget2 will send Basic HTTP authentication
 information (plaintext username and password) for all requests.

 Use of this option is not recommended, and is intended only to support
 some few obscure servers, which never send HTTP authentication
 challenges, but accept unsolicited auth info, say, in addition to form-
 based authentication.

 --compression=TYPE
 If this TYPE(identity, gzip, deflate, xz, lzma, br, bzip2, zstd, lzip
 or any combination of it) is given, Wget2 will set â€œAccept-Encodingâ€�
 header accordingly. --no-compression means no â€œAccept-Encodingâ€� header
 at all. To set â€œAccept-Encodingâ€� to a custom value, use --no-
 compression in combination with --header="Accept-Encoding: xxx".

 Compatibility-Note: none type in Wget 1.X has the same meaning as
 identity type in Wget2.

 --download-attr=[strippath|usepath]
 The download HTML5 attribute may specify (or better: suggest) a file
 name for the href URL in a and area tags. This option tells Wget2 to
 make use of this file name when saving. The two possible values are
 `strippath' to strip the path from the file name. This is the default.

 The value `usepath' takes the file name as as including the directory.
 This is very dangerous and we canâ€™t stress enough not to use it on
 untrusted input or servers ! Only use this if you really trust the
 input or the server.

 HTTPS (SSL/TLS) Options
 To support encrypted HTTP (HTTPS) downloads, Wget2 must be compiled
 with an external SSL library. The current default is GnuTLS. In
 addition, Wget2 also supports HSTS (HTTP Strict Transport Security).
 If Wget2 is compiled without SSL support, none of these options are
 available.

 --secure-protocol=protocol
 Choose the secure protocol to be used (default: auto).

 Legal values are auto, SSLv3, TLSv1, TLSv1_1, TLSv1_2, TLSv1_3 and PFS.

 If auto is used, the TLS libraryâ€™s default is used.

 Specifying SSLv3 forces the use of the SSL3. This is useful when
 talking to old and buggy SSL server implementations that make it hard
 for the underlying TLS library to choose the correct protocol version.

 Specifying PFS enforces the use of the so-called Perfect Forward
 Security cipher suites. In short, PFS adds security by creating a one-
 time key for each TLS connection. It has a bit more CPU impact on
 client and server. We use known to be secure ciphers (e.g. no MD4) and
 the TLS protocol.

 TLSv1 enables TLS1.0 or higher. TLSv1_1 enables TLS1.1 or higher.
 TLSv1_2 enables TLS1.2 or higher. TLSv1_3 enables TLS1.3 or higher.

 Any other protocol string is directly given to the TLS library,
 currently GnuTLS, as a â€œpriorityâ€� or â€œcipherâ€� string. This is for
 users who know what they are doing.

 --https-only
 When in recursive mode, only HTTPS links are followed.

 --no-check-certificate
 Donâ€™t check the server certificate against the available certificate
 authorities. Also donâ€™t require the URL host name to match the common
 name presented by the certificate.

 The default is to verify the serverâ€™s certificate against the
 recognized certificate authorities, breaking the SSL handshake and
 aborting the download if the verification fails. Although this
 provides more secure downloads, it does break interoperability with
 some sites that worked with previous Wget versions, particularly those
 using self-signed, expired, or otherwise invalid certificates. This
 option forces an â€œinsecureâ€� mode of operation that turns the
 certificate verification errors into warnings and allows you to
 proceed.

 If you encounter â€œcertificate verificationâ€� errors or ones saying that
 â€œcommon name doesnâ€™t match requested host nameâ€�, you can use this
 option to bypass the verification and proceed with the download. Only
 use this option if you are otherwise convinced of the siteâ€™s
 authenticity, or if you really donâ€™t care about the validity of its
 certificate. It is almost always a bad idea not to check the
 certificates when transmitting confidential or important data. For
 self-signed/internal certificates, you should download the certificate
 and verify against that instead of forcing this insecure mode. If you
 are really sure of not desiring any certificate verification, you can
 specify --check-certificate=quiet to tell Wget2 to not print any
 warning about invalid certificates, albeit in most cases this is the
 wrong thing to do.

 --certificate=file
 Use the client certificate stored in file. This is needed for servers

 Use the client certificate stored in file. This is needed for servers
 that are configured to require certificates from the clients that
 connect to them. Normally a certificate is not required and this
 switch is optional.

 --certificate-type=type
 Specify the type of the client certificate. Legal values are PEM
 (assumed by default) and DER, also known as ASN1.

 --private-key=file
 Read the private key from file. This allows you to provide the private
 key in a file separate from the certificate.

 --private-key-type=type
 Specify the type of the private key. Accepted values are PEM (the
 default) and DER.

 --ca-certificate=file
 Use file as the file with the bundle of certificate authorities (â€œCAâ€�)
 to verify the peers. The certificates must be in PEM format.

 Without this option Wget2 looks for CA certificates at the system-
 specified locations, chosen at OpenSSL installation time.

 --ca-directory=directory
 Specifies directory containing CA certificates in PEM format. Each
 file contains one CA certificate, and the file name is based on a hash
 value derived from the certificate. This is achieved by processing a
 certificate directory with the â€œc_rehashâ€� utility supplied with
 OpenSSL. Using --ca-directory is more efficient than --ca-certificate
 when many certificates are installed because it allows Wget2 to fetch
 certificates on demand.

 Without this option Wget2 looks for CA certificates at the system-
 specified locations, chosen at OpenSSL installation time.

 --crl-file=file
 Specifies a CRL file in file. This is needed for certificates that
 have been revocated by the CAs.

 --random-file=file
 [OpenSSL and LibreSSL only] Use file as the source of random data for
 seeding the pseudo-random number generator on systems without
 /dev/urandom.

 On such systems the SSL library needs an external source of randomness
 to initialize. Randomness may be provided by EGD (see â€“egd-file below)
 or read from an external source specified by the user. If this option
 is not specified, Wget2 looks for random data in $RANDFILE or, if that
 is unset, in $HOME/.rnd.

 If youâ€™re getting the â€œCould not seed OpenSSL PRNG; disabling SSL.â€�
 error, you should provide random data using some of the methods
 described above.

 --egd-file=file
 [OpenSSL only] Use file as the EGD socket. EGD stands for Entropy
 Gathering Daemon, a user-space program that collects data from various
 unpredictable system sources and makes it available to other programs
 that might need it. Encryption software, such as the SSL library,
 needs sources of non-repeating randomness to seed the random number
 generator used to produce cryptographically strong keys.

 OpenSSL allows the user to specify his own source of entropy using the
 â€œRAND_FILEâ€� environment variable. If this variable is unset, or if the
 specified file does not produce enough randomness, OpenSSL will read
 random data from EGD socket specified using this option.

 If this option is not specified (and the equivalent startup command is
 not used), EGD is never contacted. EGD is not needed on modern Unix
 systems that support /dev/urandom.

 --hsts
 Wget2 supports HSTS (HTTP Strict Transport Security, RFC 6797) by
 default. Use --no-hsts to make Wget2 act as a non-HSTS-compliant UA.
 As a consequence, Wget2 would ignore all the â€œStrict-Transport-
 Securityâ€� headers, and would not enforce any existing HSTS policy.

 --hsts-file=file
 By default, Wget2 stores its HSTS data in $XDG_DATA_HOME/wget/.wget-
 hsts or, if XDG_DATA_HOME is not set, in ~/.local/wget/.wget-hsts. You
 can use --hsts-file to override this.

 Wget2 will use the supplied file as the HSTS database. Such file must
 conform to the correct HSTS database format used by Wget. If Wget2
 cannot parse the provided file, the behaviour is unspecified.

 To disable persistent storage use --no-hsts-file.

 The Wget2â€™s HSTS database is a plain text file. Each line contains an
 HSTS entry (ie. a site that has issued a â€œStrict-Transport-Securityâ€�
 header and that therefore has specified a concrete HSTS policy to be
 applied). Lines starting with a dash (â€œ#â€�) are ignored by Wget.
 Please note that in spite of this convenient human-readability hand-
 hacking the HSTS database is generally not a good idea.

 An HSTS entry line consists of several fields separated by one or more
 whitespace:

 SP [] SP SP SP

 The hostname and port fields indicate the hostname and port to which
 the given HSTS policy applies. The port field may be zero, and it
 will, in most of the cases. That means that the port number will not
 be taken into account when deciding whether such HSTS policy should be
 applied on a given request (only the hostname will be evaluated). When
 port is different to zero, both the target hostname and the port will
 be evaluated and the HSTS policy will only be applied if both of them
 match. This feature has been included for testing/development purposes
 only. The Wget2 testsuite (in testenv/) creates HSTS databases with
 explicit ports with the purpose of ensuring Wget2â€™s correct behaviour.
 Applying HSTS policies to ports other than the default ones is
 discouraged by RFC 6797 (see Appendix B â€œDifferences between HSTS
 Policy and Same-Origin Policyâ€�). Thus, this functionality should not
 be used in production environments and port will typically be zero.
 The last three fields do what they are expected to. The field
 include_subdomains can either be 1 or 0 and it signals whether the
 subdomains of the target domain should be part of the given HSTS policy
 as well. The created and max-age fields hold the timestamp values of
 when such entry was created (first seen by Wget) and the HSTS-defined
 value `max-age', which states how long should that HSTS policy remain
 active, measured in seconds elapsed since the timestamp stored in
 created. Once that time has passed, that HSTS policy will no longer be
 valid and will eventually be removed from the database.

 If you supply your own HSTS database via --hsts-file, be aware that
 Wget2 may modify the provided file if any change occurs between the
 HSTS policies requested by the remote servers and those in the file.
 When Wget2 exits, it effectively updates the HSTS database by rewriting
 the database file with the new entries.

 If the supplied file does not exist, Wget2 will create one. This file
 will contain the new HSTS entries. If no HSTS entries were generated
 (no â€œStrict-Transport-Securityâ€� headers were sent by any of the
 servers) then no file will be created, not even an empty one. This
 behaviour applies to the default database file (~/.wget-hsts) as well:
 it will not be created until some server enforces an HSTS policy.

 Care is taken not to override possible changes made by other Wget2
 processes at the same time over the HSTS database. Before dumping the
 updated HSTS entries on the file, Wget2 will re-read it and merge the
 changes.

 Using a custom HSTS database and/or modifying an existing one is
 discouraged. For more information about the potential security threats
 arose from such practice, see section 14 â€œSecurity Considerationsâ€� of
 RFC 6797, specially section 14.9 â€œCreative Manipulation of HSTS Policy
 Storeâ€�.

 --hsts-preload
 Enable loading of a HSTS Preload List as supported by libhsts.
 (default: on, if built with libhsts).

 --hsts-preload-file=file
 If built with libhsts, Wget2 uses the HSTS data provided by the
 distribution. If there is no such support by the distribution or if
 you want to load your own file, use this option.

 The data file must be in DAFSA format as generated by libhstsâ€™ tool
 hsts-make-dafsa.

 --hpkp
 Enable HTTP Public Key Pinning (HPKP) (default: on).

 This is a Trust On First Use (TOFU) mechanism to add another security
 layer to HTTPS (RFC 7469).

 The certificate key data of a previously established TLS session will
 be compared with the current data. In case both doesnâ€™t match, the
 connection will be terminated.

 --hpkp-file=file
 By default, Wget2 stores its HPKP data in $XDG_DATA_HOME/wget/.wget-
 hpkp or, if XDG_DATA_HOME is not set, in ~/.local/wget/.wget-hpkp. You
 can use --hpkp-file to override this.

 Wget2 will use the supplied file as the HPKP database. Such file must
 conform to the correct HPKP database format used by Wget. If Wget2
 cannot parse the provided file, the behaviour is unspecified.

 To disable persistent storage use --no-hpkp-file.

 --tls-resume
 Enable TLS Session Resumption which is disabled as default.

 For TLS Session Resumption the session data of a previously established
 TLS session is needed.

 There are several security flaws related to TLS 1.2 session resumption
 which are explained in detail at:
 https://web.archive.org/web/20171103231804/https://blog.filippo.io/we-
 need-to-talk-about-session-tickets/

 --tls-session-file=file
 By default, Wget2 stores its TLS Session data in
 $XDG_DATA_HOME/wget/.wget-session or, if XDG_DATA_HOME is not set, in
 ~/.local/wget/.wget-session. You can use --tls-session-file to
 override this.

 Wget2 will use the supplied file as the TLS Session database. Such
 file must conform to the correct TLS Session database format used by
 Wget. If Wget2 cannot parse the provided file, the behaviour is
 unspecified.

 To disable persistent storage use --no-tls-session-file.

 --tls-false-start
 Enable TLS False start (default: on).

 This reduces TLS negotiation by one RT and thus speeds up HTTPS
 connections.

 More details at https://tools.ietf.org/html/rfc7918.

 --check-hostname
 Enable TLS SNI verification (default: on).

 --ocsp
 Enable OCSP server access to check the possible revocation the HTTPS
 server certificate(s) (default: on).

 This procedure is pretty slow (connect to server, HTTP request,
 response) and thus we support OSCP stapling (server sends OCSP response
 within TLS handshake) and persistent OCSP caching.

 --ocsp-date
 Check if OCSP response is too old. (default: on)

 --ocsp-nonce
 Allow nonce checking when verifying OCSP response. (default: on)

 --ocsp-server
 Set OCSP server address (default: OCSP server given in certificate).

 --ocsp-stapling
 Enable support for OCSP stapling (default: on).

 --ocsp-file=file
 By default, Wget2 stores its TLS Session data in
 $XDG_DATA_HOME/wget/.wget-ocsp or, if XDG_DATA_HOME is not set, in
 ~/.local/wget/.wget-ocsp. You can use --ocsp-file to override this.

 Wget2 will use the supplied file as the OCSP database. Such file must
 conform to the correct OCSP database format used by Wget. If Wget2
 cannot parse the provided file, the behaviour is unspecified.

 To disable persistent OCSP caching use --no-ocsp-file.

 --dane (experimental)
 Enable DANE certificate verification (default: off).

 In case the server verification fails due to missing CA certificates
 (e.g. empty certification pool), this option enables checking the TLSA
 DNS entries via DANE.

 You should have DNSSEC set up to avoid MITM attacks. Also, the
 destination hostâ€™s DNS entries need to be set up for DANE.

 Warning: This option or its behavior may change or may be removed
 without further notice.

 --http2
 Enable HTTP/2 protocol (default: on).

 Wget2 requests HTTP/2 via ALPN. If available it is preferred over
 HTTP/1.1. Up to 30 streams are used in parallel within a single
 connection.

 --http2-only
 Resist on using HTTP/2 and error if a server doesnâ€™t accept it. This
 is mainly for testing.

 --https-enforce=mode
 Sets how to deal with URLs that are not explicitly HTTPS (where scheme
 isnâ€™t https://) (default: none)

 mode=none
 Use HTTP for URLs without scheme. In recursive operation the scheme of
 the parent document is taken as default.

 mode=soft
 Try HTTPS first when the scheme is HTTP or not given. On failure fall
 back to HTTP.

 mode=hard
 Only use HTTPS, no matter if a HTTP scheme is given or not. Do not
 fall back to HTTP.

 Recursive Retrieval Options
 -r, --recursive
 Turn on recursive retrieving. The default maximum depth is 5.

 -l depth, --level=depth
 Specify recursion maximum depth level depth.

 --delete-after
 This option tells Wget2 to delete every single file it downloads, after
 having done so. It is useful for pre- fetching popular pages through a
 proxy, e.g.:

wget2 -r -nd --delete-after https://example.com/~popular/page/

 The -r option is to retrieve recursively, and -nd to not create
 directories.

 Note that when â€“delete-after is specified, --convert-links is ignored,
 so .orig files are simply not created in the first place.

 -k, --convert-links
 After the download is complete, convert the links in the document to
 make them suitable for local viewing. This affects not only the
 visible hyperlinks, but any part of the document that links to external
 content, such as embedded images, links to style sheets, hyperlinks to
 non-HTML content, etc.

 Each link will be changed in one of the two ways:

 1. The links to files that have been downloaded by Wget2 will be
 changed to refer to the file they point to as a relative link.

 Example: if the downloaded file /foo/doc.html links to
 /bar/img.gif, also downloaded, then the link in doc.html will be
 modified to point to ../bar/img.gif. This kind of transformation
 works reliably for arbitrary combinations of directories.

 2. The links to files that have not been downloaded by Wget2 will be
 changed to include host name and absolute path of the location they
 point to.

 Example: if the downloaded file /foo/doc.html links to /bar/img.gif
 (or to ../bar/img.gif), then the link in doc.html will be modified
 to point to https://example.com/bar/img.gif.

 Because of this, local browsing works reliably: if a linked file was
 downloaded, the link will refer to its local name; if it was not
 downloaded, the link will refer to its full Internet address rather
 than presenting a broken link. The fact that the former links are
 converted to relative links ensures that you can move the downloaded
 hierarchy to another directory.

 Note that only at the end of the download can Wget2 know which links
 have been downloaded. Because of that, the work done by -k will be
 performed at the end of all the downloads.

 --convert-file-only
 This option converts only the filename part of the URLs, leaving the
 rest of the URLs untouched. This filename part is sometimes referred
 to as the â€œbasenameâ€�, although we avoid that term here in order not to
 cause confusion.

 It works particularly well in conjunction with --adjust-extension,
 although this coupling is not enforced. It proves useful to populate
 Internet caches with files downloaded from different hosts.

 Example: if some link points to //foo.com/bar.cgi?xyz with --adjust-
 extension asserted and its local destination is intended to be
 ./foo.com/bar.cgi?xyz.css, then the link would be converted to
 //foo.com/bar.cgi?xyz.css. Note that only the filename part has been
 modified. The rest of the URL has been left untouched, including the
 net path (â€œ//â€�) which would otherwise be processed by Wget2 and
 converted to the effective scheme (ie. â€œhttps://â€�).

 -K, --backup-converted
 When converting a file, back up the original version with a .orig
 suffix. Affects the behavior of -N.

 -m, --mirror
 Turn on options suitable for mirroring. This option turns on recursion
 and time-stamping, sets infinite recursion depth. It is currently
 equivalent to -r -N -l inf.

 -p, --page-requisites
 This option causes Wget2 to download all the files that are necessary
 to properly display a given HTML page. This includes such things as
 inlined images, sounds, and referenced stylesheets.

 Ordinarily, when downloading a single HTML page, any requisite
 documents that may be needed to display it properly are not downloaded.
 Using -r together with -l can help, but since Wget2 does not ordinarily
 distinguish between external and inlined documents, one is generally
 left with â€œleaf documentsâ€� that are missing their requisites.

 For instance, say document 1.html contains an tag referencing
 1.gif and an tag pointing to external document 2.html. Say that
 2.html is similar but that its image is 2.gif and it links to 3.html.
 Say this continues up to some arbitrarily high number.

 If one executes the command:

wget2 -r -l 2 https:///1.html

 then 1.html, 1.gif, 2.html, 2.gif, and 3.html will be downloaded. As
 you can see, 3.html is without its requisite 3.gif because Wget2 is
 simply counting the number of hops (up to 2) away from 1.html in order
 to determine where to stop the recursion. However, with this command:

wget2 -r -l 2 -p https:///1.html

 all the above files and 3.htmlâ€™s requisite 3.gif will be downloaded.
 Similarly,

wget2 -r -l 1 -p https:///1.html

 will cause 1.html, 1.gif, 2.html, and 2.gif to be downloaded. One
 might think that:

wget2 -r -l 0 -p https:///1.html

 would download just 1.html and 1.gif, but unfortunately this is not the
 case, because -l 0 is equivalent to -l inf, that is, infinite
 recursion. To download a single HTML page (or a handful of them, all
 specified on the command-line or in a -i URL input file) and its (or
 their) requisites, simply leave off -r and -l:

wget2 -p https:///1.html

 Note that Wget2 will behave as if -r had been specified, but only that
 single page and its requisites will be downloaded. Links from that
 page to external documents will not be followed. Actually, to download
 a single page and all its requisites (even if they exist on separate
 websites), and make sure the lot displays properly locally, this author
 likes to use a few options in addition to -p:

wget2 -E -H -k -K -p https:///

 To finish off this topic, itâ€™s worth knowing that Wget2â€™s idea of an
 external document link is any URL specified in an tag, an
 tag, or a tag other than .

 --strict-comments
 Obsolete option for compatibility with Wget1.x. Wget2 always
 terminates comments at the first occurrence of -->, as popular browsers
 do.

 --robots
 Enable the Robots Exclusion Standard (default: on).

 For each visited domain, follow rules specified in /robots.txt. You
 should respect the domain ownerâ€™s rules and turn this off only for very
 good reasons.

 Whether enabled or disabled, the robots.txt file is downloaded and
 scanned for sitemaps. These are lists of pages / files available for
 download that not necessarily are available via recursive scanning.

 This behavior can be switched off by --no-follow-sitemaps.

 Recursive Accept/Reject Options
 -A acclist, --accept=acclist, -R rejlist, --reject=rejlist
 Specify comma-separated lists of file name suffixes or patterns to
 accept or reject. Note that if any of the wildcard characters, *, ?,
 [,], appear in an element of acclist or rejlist, it will be treated as
 a pattern, rather than a suffix. In this case, you have to enclose the
 pattern into quotes to prevent your shell from expanding it, like in -A
 "*.mp3" or -A '*.mp3'.

 --accept-regex=urlregex, --reject-regex=urlregex
 Specify a regular expression to accept or reject file names.

 --regex-type=regextype
 Specify the regular expression type. Possible types are posix or pcre.
 Note that to be able to use pcre type, wget2 has to be compiled with
 libpcre support.

 --filter-urls
 Apply the accept and reject filters on the URL before starting a
 download.

 -D domain-list, --domains=domain-list
 Set domains to be followed. domain-list is a comma-separated list of
 domains. Note that it does not turn on -H.

 --exclude-domains=domain-list
 Specify the domains that are not to be followed.

 --follow-sitemaps
 Parsing the sitemaps from robots.txt and follow the links. (default:
 on).

 This option is on for recursive downloads whether you specify --robots
 or -no-robots. Following the URLs found in sitemaps can be switched
 off with --no-follow-sitemaps.

 --follow-tags=list
 Wget2 has an internal table of HTML tag / attribute pairs that it
 considers when looking for linked documents during a recursive
 retrieval. If a user wants only a subset of those tags to be
 considered, however, he or she should be specify such tags in a comma-
 separated list with this option.

 --ignore-tags=list
 This is the opposite of the --follow-tags option. To skip certain HTML
 tags when recursively looking for documents to download, specify them
 in a comma-separated list.

 In the past, this option was the best bet for downloading a single page
 and its requisites, using a command-line like:

wget2 --ignore-tags=a,area -H -k -K -r https:///

 However, the author of this option came across a page with tags like â€œâ€�
 and came to the realization that specifying tags to ignore was not
 enough. One canâ€™t just tell Wget2 to ignore â€œâ€�, because then
 stylesheets will not be downloaded. Now the best bet for downloading a
 single page and its requisites is the dedicated --page-requisites
 option.

 --ignore-case
 Ignore case when matching files and directories. This influences the
 behavior of -R, -A, -I, and -X options. For example, with this option,
 -A â€œ*.txtâ€� will match file1.txt, but also file2.TXT, file3.TxT, and so
 on. The quotes in the example are to prevent the shell from expanding
 the pattern.

 -H, --span-hosts

 -H, --span-hosts
 Enable spanning across hosts when doing recursive retrieving.

 -L, --relative [Not implemented yet]
 Follow relative links only. Useful for retrieving a specific home page
 without any distractions, not even those from the same hosts.

 -I list, --include-directories=list
 Specify a comma-separated list of directories you wish to follow when
 downloading. Elements of the list may contain wildcards.

wget2 -r https://webpage.domain --include-directories=*/pub/*/

 Please keep in mind that */pub/*/ is the same as /*/pub/*/ and that it
 matches directories, not strings. This means that */pub doesnâ€™t affect
 files contained at e.g. /directory/something/pub but /pub/* matches
 every subdir of /pub.

 -X list, --exclude-directories=list
 Specify a comma-separated list of directories you wish to exclude from
 download. Elements of the list may contain wildcards.

wget2 -r https://gnu.org --exclude-directories=/software

 -I / -X combinations
 Please be aware that the behavior of this combination of flags works
 slightly different than in wget1.x.

 If -I is given first, the default is `exclude all'. If -X is given
 first, the default is `include all'.

 Multiple -I/-X options are processed `first to last'. The last match
 is relevant.

Example: `-I /pub -X /pub/trash` would download all from /pub/ except from /pub/trash.
Example: `-X /pub -I /pub/important` would download all except from /pub where only /pub/important would be downloaded.

 To reset the list (e.g. to ignore -I/-X from .wget2rc files) use --no-
 include-directories or --no-exclude-directories.

 -np, --no-parent
 Do not ever ascend to the parent directory when retrieving recursively.
 This is a useful option, since it guarantees that only the files below
 a certain hierarchy will be downloaded.

 --filter-mime-type=list
 Specify a comma-separated list of MIME types that will be downloaded.
 Elements of list may contain wildcards. If a MIME type starts with the
 character `!' it wonâ€™t be downloaded, this is useful when trying to
 download something with exceptions. If server doesnâ€™t specify the MIME
 type of a file it will be considered as `application/octet-stream'.
 For example, download everything except images:

wget2 -r https:/// --filter-mime-type=*,\!image/*

 It is also useful to download files that are compatible with an
 application of your system. For instance, download every file that is
 compatible with LibreOffice Writer from a website using the recursive
 mode:

wget2 -r https:/// --filter-mime-type=$(sed -r '/^MimeType=/!d;s/^MimeType=//;s/;/,/g' /usr/share/applications/libreoffice-writer.desktop)

 Plugin Options
 --list-plugins
 Print a list all available plugins and exit.

 --local-plugin=file
 Load file as plugin.

 --plugin=name
 Load a plugin with a given name from the configured plugin directories.

 --plugin-dirs=directories
 Set plugin directories. directories is a comma-separated list of
 directories.

 --plugin-help
 Print the help messages from all loaded plugins.

 --plugin-opt=option
 Set a plugin specific command line option.

 option is in the format .

